

The

Book

Last edited: 24.08.2015 Norwegian Centre for Space-related Education Rev. 2.12

NAROM AS 24. Aug. 2015 Page 2 / 42

Content

About the CanSat book.. 4

Introduction to CanSat .. 5

What is a CanSat? .. 5

The CanSat-kit ... 5

The Primary Mission .. 6

Getting started .. 6

Installing software ... 6

Launch the Arduino application .. 8

Open example code ... 8

Testing the Arduino Uno board ... 10

Assembling the components ... 11

Constructing the CanSat-shield ... 11

Testing the CanSat kit .. 14

Using the sensors .. 18

Intro ... 18

Analogue to Digital .. 18

Sensors .. 19

Calibrating the sensors .. 23

Altitude Calculations ... 24

Using the radio .. 26

Introduction ... 26

Transceiver .. 26

Setting up transceiver hardware ... 27

Installing drivers .. 27

Programming the transceivers with Arduino .. 27

RF-Magic .. 29

Preparing CanSat Shield Radio .. 30

Testing the radio .. 30

Terminal v1.9b by Br@y++ ... 31

Parachute design ... 32

Required Descent Parameters ... 32

NAROM AS 24. Aug. 2015 Page 3 / 42

Parachute production .. 32

Descent Physics ... 33

Semi-spherical Parachute Design .. 34

Cross Parachute Design ... 35

Parapent .. 35

Flat parachute design .. 36

CanSat Design .. 37

Introduction ... 37

Competition requirements .. 37

The Bracket .. 38

Antenna design .. 39

Appendix .. 40

Frequencies ... 40

Component list .. 41

NAROM AS 24. Aug. 2015 Page 4 / 42

About the CanSat book
This book is written by Thomas Gansmoe, Stian Vik Mathisen, and Jøran Grande from NAROM

together with Jens F. Dalsgaard Nielsen from Aalborg University and Nils Kristian Rossing from the

Norwegian University of Science and Technology. The CanSat shield used in this book is developed by

Jens F. Dalsgaard Nielsen and Simon Jensen from Aalborg University College.

The CanSat book is built up so that you can start from scratch and get a feeling of mastering the kit as

you read through the book. In the beginning we will describe how you can get your Arduino board

and shield up and running, and also go through the primary mission. In this book we have described a

primary mission and how to accomplish the goals.

In most competitions in Europe, you have a standard primary mission which is equal to all

participants. The teams will also have to complete a secondary mission of their own choosing. This

will not be a part of this compendium.

NAROM AS 24. Aug. 2015 Page 5 / 42

Introduction to CanSat

What is a CanSat?
A CanSat is a representation of a real satellite, integrated within the volume and shape of a soft drink

can (330 ml). The challenge for the students is to fit all the major subsystems found in a satellite,

such as power, sensors and a communication system, into this minimal volume. The CanSat is then

launched to an altitude of a few hundred meters by a rocket or dropped from a platform or captive

balloon, and its mission begins: to carry out a scientific experiment and achieve a safe landing.

CanSats offer a unique opportunity for students to have a first practical experience of a real space

projects. They are responsible for all aspects: selecting its mission, designing the CanSat, integrating

the components, programming the on-board computer, testing, preparing for launch and then

analysing the data.

The CanSat-kit
The CanSat-kit is based on an Arduino Uno board and a sensor shield board. Arduino is an open-

source electronics prototyping platform based on flexible, easy-to-use hardware and software. It's

intended for artists, designers, hobbyists, and anyone interested in creating interactive objects or

environments. Arduino can sense the environment by receiving input from a variety of sensors and

can affect its surroundings by controlling lights, motors, and other actuators.

Here are some examples on Arduino projects:

 Make an automatic night light which switches on when its dark

 Intrusion alarm

 Thermostat

 Line Follower Robot

 Ham radio Morse code keyed/propagation beacon.

 Graphical calculator that graphs serial inputs on a graphical LCD.

 Wi-Fi controlled RC-Car

Many more ideas can be found at http://arduino.cc/playground/Projects/Ideas

The sensor shield card has been developed at the University of Aalborg by Professor Jens Dalsgaard

Nielsen and Simon Jensen. The shield has been designed to include:

 Communication radio (APC220) with antenna

 Pressure sensor (MPX4115)

 Temperature sensor (LM35DZ)

 Temperature sensor (NTC 10k)

 Three axis accelerometer (MMA7361L)

 SD storage card (OpenLog)

The sensor shield is designed to fit on top of the Arduino Uno R3 board.

http://arduino.cc/playground/Projects/Ideas

NAROM AS 24. Aug. 2015 Page 6 / 42

The Primary Mission

Getting started
The Arduino Uno is a microcontroller board based on the ATmega328. It has 14 digital input/output

pins (of which 6 can be used as PWM outputs), 6 analogue inputs, a 16 MHz crystal oscillator, a USB

connection, a power jack, an ICSP header, and a reset button. It contains everything needed to

support the microcontroller; simply connect it to a computer with a USB cable or power it with an

AC-to-DC adapter or battery.

To get started you have your ARDUINO UNO board in front of you, a computer and a standard USB

cable (A plug to B plug): the kind you would connect to a USB printer.

The open-source Arduino environment makes it easy to write code and upload it to the I/O board. It

runs on Windows, Mac OS X and Linux. The environment is written in Java and based on Processing,

AVR-gcc, and other open source software.

Installing software

Before you connect your Arduino board to the computer, make sure you have installed the Software

and drivers needed to run with the board.

You can download the latest release of the Arduino integrated development environment (IDE)

software by going to http://arduino.cc and click the “Download” link in the top menu. Here you can

choose a download depending on what operating system you use.

 Download and run the latest version of the Arduino IDE (ver. 1.6.5)

 For Windows users with administrative rights on the computer, use the Windows installer. If

not, download the zip-file and extract the file to a local folder on your computer.

It is recommended to use the installer if you have administrative rights. This will allow you

to automatically install the drivers for the Arduino board.

Connecting the board

The Arduino Uno automatically draws power from either the USB connection of a computer or an

external power supply. Connect the Arduino board to your computer using the USB cable. The green

power LED (labelled PWR) should turn on.

Install drivers

If you used the zip-file or unchecked the “install driver” part during the installation, you might have

to manually install the drivers to connect the Arduino board.

Installing drivers for the Arduino Uno with Windows 7/8, Vista or XP:

 Plug in your board and wait for Windows to begin its driver installation process. On some

computers the drivers will install automatically. If not, follow the steps below.

 Click on the Start Menu, and open the Control Panel.

http://arduino.cc/

NAROM AS 24. Aug. 2015 Page 7 / 42

 While in the Control Panel, navigate to System and Security. Next, open the Device Manager

which you will find under System.

 Look under Ports (COM & LPT). You should see an open port named "Arduino UNO (COMxx)"

In some cases you won’t find “Arduino Uno”, instead you will find “Unknown device” at the

top.

 Right click on the "Arduino UNO (COMxx)" port and choose the "Update Driver Software"

option.

 Next, choose the "Browse my computer for Driver software" option.

 Finally, navigate to and select the Arduino Uno's driver file, named "ArduinoUNO.inf",

located in the "Drivers" folder of the Arduino Software download (not the "FTDI USB Drivers"

subdirectory).

 Windows will finish up the driver installation from here.

NAROM AS 24. Aug. 2015 Page 8 / 42

Launch the Arduino application

Double-click the Arduino application in the folder where you extracted it.

Open example code
NAROM has a compilation of program codes which will be used during the course.

Open the example code by: File → Open → “CanSat-folder” “.\code\ArduinoTest\ArduinoTest.ino”.

Figure 1: Arduino IDE with test code

NAROM AS 24. Aug. 2015 Page 9 / 42

Select your board

You’ll need to select the entry in the Tools → Board menu (Figure 2) that corresponds to your

Arduino. Otherwise you won’t be able to communicate with the Arduino Uno board.

Figure 2: Selecting the Board

Select your serial port

Select the serial device of the Arduino board from the Tools → Serial Port menu. You will probably

have several COM-ports available. The Arduino will most likely be the highest COM-port number. To

make sure, you can disconnect your Arduino board and re-open the menu; the entry that disappears

should be the Arduino board. Reconnect the board and select the correct serial port.

In the newest version of Arduino IDE (1.6.4), the correct com-port will be labelled (Arduino Uno) in

the port list.

NAROM AS 24. Aug. 2015 Page 10 / 42

Uploading the program

Now, simply click the "Upload" button (Right arrow on the left, Figure 3) in the compiler. Wait a few

seconds - you should see the RX and TX LEDs on the Arduino board flashing. If the upload is

successful, the message "Done uploading." will appear in the status bar.

Figure 3: Uploading a code

Read data

Open the Serial Monitor to look at the data which is received from the Arduino Uno board.

The Serial Monitor is opened by clicking the icon to the right in the toolbar (Figure 4). The Serial

Monitor will open a new window which will give you a serial text stream of the data printed from the

Arduino board.

Figure 4: Opening the Serial Monitor

Testing the Arduino Uno board

To verify that you are receiving correct data you can test it by setting each channel to ground and

power and read the output in the Serial Monitor. To do this you need a wire to connect between the

input connectors and power connectors on the Arduino Uno board.

 Connect one end of the wire to A0 port

 Connect the other end to GND port

 Analog0 in the Serial Monitor should now read 0.0 volts

 Remove the wire from GND and connect it to 5V

 Analog0 should now read approximately 5.0 volts

 Remove the wire from 5V and connect it to 3.3V

 Analog0 should now read approximately 3.3 volts

 Repeat the same procedure with A1, D2 and D3

 Do you get the same value from the digital port in both 3.3V and 5V?

NAROM AS 24. Aug. 2015 Page 11 / 42

Assembling the components

Constructing the CanSat-shield

This section will show you step by step how to assemble the components for the CanSat shield.

Part list

Arduino Uno R3

 Header socket (Female

pin connector)

7-pin and 2-pin

CanSat Shield (Circuit

board)

 2-pin Jumpers

OpenLog Data logger

 with SD-card

APC220 Radio

transmitter/receiver

Temperature sensors

LM35DZ and NTC

(NTCLE100E3103JB0)

MPX4115A Pressure

sensor

MMA7361L

Accelerometer 3-axis

Resistor

1x 75 Ohm

1x 10 kOhm

Header (Male pin

connector)

2 x 32-pin

NAROM AS 24. Aug. 2015 Page 12 / 42

Assembling guide

1. Cut the header in to the following lengths:

- 6 pins (H1)

- 10 pins (H2)

- 8 pins (H3)

- 8 pins (H4)

2. Insert the headers into the Arduino board

with the short end up.

3. Mount the shield board on top of the Arduino

Uno.

Note: The board should fit only one way.

4. Solder all the pins on the top of the circuit

board and then remove it from the Arduino

Uno. Make sure not to heat the pins to long

while soldering. To long exposure to heat

might damage the Arduino board.

5. Cut out two lengths of 4-pin header and one

length of 2-pin header. Place them on the top

of the shield board and solder them on the

bottom (soldering side) as shown in the

illustration. (Placed at the J1, J2 and J3

position)

6. The header socket allows us to easily connect

and disconnect the radio for programming. If

you are unfamiliar with this kit, it is highly

recommended to use the header sockets.

This may if necessary be removed to make it

more robust.

Place the sockets on top of the board and

solder them at the soldering side.

NAROM AS 24. Aug. 2015 Page 13 / 42

7. Solder the data logger onto the shield board

using a 6-pin header. Use the short end of the

header downwards trough the shield board.

Make sure you place the logger the correct

way (See illustration). It is recommended to

use some hot glue in between the board and

the logger to support the logger. If not

supported it may easily brake off or damage

the soldering points.

8. Use two lengths of 5 pin headers and solder

the accelerometer board onto the shield

board at the U1-position. Make sure to

orient the sensor the correct way. The black

IC-chip on the accelerometer board should be

on the top (pointing upwards). Also note that

two of the solder pads both on the shield

board and the sensor have a square shape

instead of a circle shape. These squares

should be aligned.

9. Put the pressure sensor onto the shield board

and solder it on the bottom side. Make sure

to put the sensor the right way (As in the

illustration).

10. Solder on the 75 Ohms resistor to the R2

position

Note: There are two different resistors in the

kit. Make sure you use the 75 Ohm resistor,

not the 10k Ohm resistor.

11. Put the temperature IC (LM35DZ) to T1. The

orientation for the sensor is labelled on the

board. If you put it the wrong way, it can

“burn".

12. Continue with the 1µF capacitor to C1

position. The capacitors orientation is

labelled with a plus sign (+) on the board. The

longest pin on the capacitor is the positive

one. The negative pin is also labelled (white)

on the side of the capacitor.

NAROM AS 24. Aug. 2015 Page 14 / 42

13. Solder a 2-pin header to one of the radios. These pins

will only be used as support to reduce the strain on the

radio connector. Mount the radio to the shield board.

14. Solder the battery connector to the shield board.

The wire connection points will break off easily.

To avoid this you can use hot clue to clue the

wires to the board, reducing the strain on the

connection point.

The CanSat shield board is now ready to be tested. There are still two components which have not

been installed; the NTC temperature sensor and the 10k Ohm resistor. The NTC temperature sensor

is optional but recommended to connect. This temperature sensor has a faster response time than

the LM35.

Note: If you choose to use the NTC sensor you will also have to install the 10k Ohm resistor (R1) to

make the sensor work.

NAROM AS 24. Aug. 2015 Page 15 / 42

Testing the CanSat kit

After finishing the CanSat Shield board you need to test it to make sure that all of the components

are working properly. The following steps will guide you through the test procedure:

1. Install the Shield board on top of Arduino Uno (Make sure the power is disconnected before

mounting the Shield board).

2. Power up the CanSat by connecting the battery.

 There is a green light on the Arduino Uno labelled “ON”. This should always be illuminated

when the Arduino Uno is powered on.

If you fail to get the power light on, test your battery and also make sure there are no short

circuits on the Shield board.

3. Disconnect the battery, then connect the USB cable and check the “ON” light again.

4. Open the sketch file “ShieldTest.ino” in the Arduino IDE (1.0 or later version) and upload the

sketch to the Arduino Uno board. This is a test program designed to give you measurements

from all the sensors on the CanSat kit.

5. Start the “Serial Monitor” in the Arduino IDE.

You should get some data similar to what you see in the illustration below.

Counter: 0 | Time[s]: 0.00 | Temp: 2.10 V | NTC: 2.06 V | Pressure: 2.01 V | Acceleration [x,y,z]: 1.96 V, 1.91 V, 2.07 V,

Counter: 1 | Time[s]: 0.50 | Temp: 1.98 V | NTC: 2.02 V | Pressure: 1.99 V | Acceleration [x,y,z]: 1.95 V, 1.89 V, 2.04 V,

Counter: 2 | Time[s]: 0.99 | Temp: 1.94 V | NTC: 1.98 V | Pressure: 1.96 V | Acceleration [x,y,z]: 1.93 V, 1.87 V, 2.02 V,

Counter: 3 | Time[s]: 1.50 | Temp: 1.91 V | NTC: 1.96 V | Pressure: 1.94 V | Acceleration [x,y,z]: 1.91 V, 1.86 V, 2.00 V,

Counter: 4 | Time[s]: 2.00 | Temp: 1.88 V | NTC: 1.93 V | Pressure: 1.92 V | Acceleration [x,y,z]: 1.90 V, 1.84 V, 2.03 V,

Counter: 5 | Time[s]: 2.50 | Temp: 1.88 V | NTC: 1.93 V | Pressure: 1.91 V | Acceleration [x,y,z]: 1.89 V, 1.84 V, 2.02 V,

Counter: 6 | Time[s]: 3.00 | Temp: 1.87 V | NTC: 1.92 V | Pressure: 1.91 V | Acceleration [x,y,z]: 1.88 V, 1.82 V, 2.01 V,

Counter: 7 | Time[s]: 3.50 | Temp: 1.87 V | NTC: 1.92 V | Pressure: 1.90 V | Acceleration [x,y,z]: 1.88 V, 1.83 V, 2.00 V,

Counter: 8 | Time[s]: 4.00 | Temp: 1.85 V | NTC: 1.91 V | Pressure: 1.90 V | Acceleration [x,y,z]: 1.87 V, 1.82 V, 1.97 V,

Counter: 9 | Time[s]: 4.50 | Temp: 1.87 V | NTC: 1.92 V | Pressure: 1.90 V | Acceleration [x,y,z]: 1.87 V, 1.82 V, 1.96 V,

6. Description of the measured data

Counter: This will count the number of measurements done by the CanSat.

Time: This is the time in seconds since the CanSat was turned on.

Temp: Shows data from the first temperature sensor (LM35DZ).

NTC: Shows data from the optional temperature sensor (NTC).

Pressure: Shows data from the pressure sensor (MPX4115A).

Acceleration: Show data from the accelerometer (MMA7361L). This sensor will give you

tree readings, one for each axis (x, y and Z).

By default the sampling speed will be at 2 Hz (Two lines per second) and all the measured

values in volts.

NAROM AS 24. Aug. 2015 Page 16 / 42

7. The test program can be controlled by sending a character via the serial monitor. Enter a

character at the command line and press enter.

The test program will accept the following commands:

“1” – Sets the sampling speed to 1 Hz (1 per second).

“2” – Sets the sampling speed to 2 Hz (2 per second).

“5” – Sets the sampling speed to 5 Hz (5 per second).

“R” – Resets the counter back to zero.

“V” – Changes all the sensor outputs to volts.

“S” – Changes all the sensor outputs to measured values in Celsius, Pascal and G (9,81N).

8. Test all the sensors by trying to manipulate the sensors.

Do you get response from all the sensors?

9. Test the accelerometer setting. Put a shunt (jumper) on the J1 port. This will regulate the

sensitivity for the accelerometer from 1,5G to 6G. The output should be the same, but with a

different resolution.

If you have got data from all the sensors and they seem to work fine the testing of the main

functionality is done. The radio and data logger will be tested at a later point in this manual.

Note: The sensors may have some deviations from the actual conditions caused by offset in

the sensors. There is a section on how to calibrate the sensor further down in this manual.

NAROM AS 24. Aug. 2015 Page 17 / 42

Notes:

NAROM AS 24. Aug. 2015 Page 18 / 42

Using the sensors

Intro

The CanSat kit used in this manual comes with a sensor board. Connected to this board are four

sensors; a pressure sensor, two temperature sensors and a three axis accelerometer. These sensors

produce a voltage depending on the value of the parameter the sensor measures. It can take on any

value in a certain range; such a signal is called an analogue signal, viewed at the top in Figure 5. From

the measured voltages, we can calculate the corresponding value, for instance converting voltage to

temperature.

This section will show you how to convert the analogue voltage measured at the sensor, to the

physical quantity with the correct unit.

Analogue to Digital

All digital components operate with discrete signals. Unlike the analogue signal, a signal that can only

take on some discrete values is called a digital signal. In Figure 5 these two different signals are

illustrated. The top graph shows an analogue (continuous) signal, and the bottom graph shows a

digital (discrete) signal.

Figure 5: Analogue and digital signal

Desktop or laptop computers, as well as the small computer in the CanSat (called a microcontroller),

can only process digital signals. To convert the analogue signal from the sensor into a digital one we

NAROM AS 24. Aug. 2015 Page 19 / 42

use an Analogue to Digital Converter (ADC), which as the name implies, converts an analogue signal

into a digital signal.

The ADC converter is incorporated in the microcontroller and has 8 input channels. It is a 10 bit ADC;

it will convert an analogue signal into a digital signal with a 10 bit binary number. One Bit represents

one binary digit and can have a value of 0 or 1, which also can be represented by High or Low

voltage, as well as On or Off. In programming 0 and 1 is also often represented by True (1) or False

(0).

Each digit in the binary number can have 2 values, 0 or 1. A 10 bit binary number can have 210 = 1024

different values, and can represent an integer ranging from 0 to 1023. The microcontroller can

understand digital numbers and use it for computations, which can be programmed into the

processor by writing a program code. An example of such a code is the TestShield-code which was

used in the previous part of this manual.

Each sensor in the CanSat is sampled by the ADC, which turns each analogue value into a 10 bit

number. 0 volts is converted into the binary number 0000000000 = 0 and 5 volts into the binary

number 1111111111 = 1023.

By representing the 5 volt input by 1024 levels we have a resolution of 5V/1023 = 4,89mV. This

shows us that with a 10 bit ADC, the smallest voltage change we can measure is 4,89 mV. This is

important to notice when we start working with the sensitivity of the sensors.

The sequence of events is thus as follows:

1. The temperature sensor converts the measured temperature into a voltage. This is an

analogue signal.

2. The ADC converts the analogue signal into a digital signal, which the processor can handle.

3. Inside the microcontroller the signal is stored as a 10 bit binary number, which can be used

for computations.

Sensors

In the “Primary mission” part of this manual we will go through the pressure sensor and both of the

temperature sensors. The accelerometer is not a part of the primary mission, and will therefore be

described in the “Secondary mission” part of the manual.

Pressure Sensor (MPX4115a)

The pressure sensor used is the MPX4115A from Motorola. It uses a silicon piezoresistive sensor

element. Figure 6 presents a cross-sectional view of the sensor.

If a material is called “piezoresistive”, it means that the resistance of the material will change when a

mechanical stress is applied. In this case the piezoresistive material is silicon. The changes of

NAROM AS 24. Aug. 2015 Page 20 / 42

resistance for silicon are far greater than for example steel, making this material very useful to use as

a sensor element in a pressure sensor.

Figure 6: Cross-sectional view of the pressure sensor

Figure 7 shows a more detailed look into the sensor. It shows the dimensions of the sensor and the

layout of the connections. To relate the measured voltages to ambient pressure values, the transfer

function of the sensor is needed. Such a function describes the mathematical relation between the

voltage output of the sensor and the equivalent pressure. This function can be found in the

datasheets of the sensor. Figure 8 shows the output voltage versus the ambient air pressure for the

sensor as we find it in the datasheet. The output voltage 𝑉𝑜𝑢𝑡 is:

𝑉𝑜𝑢𝑡 = 𝑉𝑠(0.009𝑃 − 0.095)

Where P is the airpressure in kPa and 𝑉𝑠 is the supply voltage.

Figure 7: Case style of the pressure sensor

NAROM AS 24. Aug. 2015 Page 21 / 42

Figure 8: Transfer function of the pressure sensor

Temperature Sensor A (LM35DZ)

The LM35DZ temperature sensor is made for linear measurement in degrees Celsius temperature (or

Kelvin). The sensor is made for measuring temperatures between 0°C and 100°C. The output voltage

is 250mV at 25°C and the sensor has a sensitivity of 10mV/°C. You can use this information together

with the information in the LM35 datasheet, which you will find on your DVD, to make a transfer

function of the sensor. You may also plot this on your computer or calculator.

Sensor output [V] = Sensitivity [V/°C] * Temperature [°C] + Output at 0°C (Offset)

Temperature sensor B (NTC)

The temperature sensor used in the CanSat is the NTCLE203E3103JBO manufactured by Vishay/BC

components. It is a NTC, or Negative Temperature Coefficient thermistor. The thermal conductivity

rises with increasing temperature. Most ceramic materials exhibit such behaviour. Other materials

however will have an opposite behaviour, with rising temperature the conductivity decreases. Most

NTC thermistors are therefore made out of semi conductive materials, something in between an

insulator and a conductor, with some special qualities.

Simply put, when the material is heated, the electrons in the material are energized, so even more

electrons are able to move around, thus the material can conduct electricity more easily. When a

material can conduct electricity more easily its resistance will decrease. Increased temperature will

therefore lead to decreased resistance. This inverse relationship is the reason why this sensor is

called a Negative Temperature Coefficient (NTC) resistor.

NAROM AS 24. Aug. 2015 Page 22 / 42

Figure 9: NTC measuring circuit

On the sensor board, the temperature sensor is connected in series with a resistor (R1) which has a

constant resistance of 10 kΩ, as seen in the simplified diagram shown in Figure 9. When resistors are

connected in series the current in the circuit will be the same everywhere. The total resistance can

be calculated by:

𝑅𝑇 = 𝑅1 + 𝑅𝑁𝑇𝐶

𝐼 =
𝑈

𝑅
=

5𝑉

(𝑅1 + 𝑅𝑁𝑇𝐶)

The same current, I, flows through the fixed resistor R1 giving a voltage VMeasured across the resistor.

This can be put into the following equation:

𝐼𝑅1 =
𝑈𝑅1

𝑅1
=

𝑉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑅1

Since the current is the same everywhere in the circuit, we can set up the following equation:

IR1 = INTC

5𝑉

(𝑅1 + 𝑅𝑁𝑇𝐶)
=

𝑉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑅1

From this we can get the relation between the measured voltage (VMeasured) and the resistance of the

NTC temperature sensor (RNTC).

𝑉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =
5𝑉 ∙ 𝑅1

(𝑅1 + 𝑅𝑁𝑇𝐶)

𝑅𝑁𝑇𝐶 =
5𝑉 ∙ 𝑅1

𝑉𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑
− 𝑅1

To get a complete transfer function you will also need the relation between the temperature, and

the resistance of the sensor (RNTC). You can find this in the sensor datasheet.

NAROM AS 24. Aug. 2015 Page 23 / 42

Calibrating the sensors

In some cases the transfer function between the temperature and the output voltage of the sensor is

unknown. A simple method to determine the transfer function of the sensor, is to measure the

output voltage at some (3-4) specific temperatures and plot the result into a graph. For our specific

NTC sensor we can assume that the relationship is linear within the range of interest. Linear

regression can be used to find the linear equation of best fit.

Linearity means that the relation between voltage and the parameter temperature is directly

proportional. This relation can be expressed by the linear formula:

Parameter = A * Voltage + B

Figure 10: Measured test results

The graph of figure 10 can be used to estimate the values of A and B. In this diagram you can plot the

measured voltages on the x-axis, and the parameter (in this case temperature) on the y-axis. In the

table next to the diagram you will find some example measurements for this sensor. These

measurements are also plotted in the graph. Step two is to draw a straight line through the points.

The more points you use the more accurate your result will be. However it will be more difficult to fit

a line through each and every data point. Fit the line as closely as possible, and use it to determine

the values of A and B from the standard linear formula above.

A: is the slope of the line,

B: is the intersection with the y-axis.

NAROM AS 24. Aug. 2015 Page 24 / 42

Altitude Calculations

The atmosphere is all around us; it is a thin gaseous layer surrounding our planet. The atmosphere is

composed primarily of nitrogen (78%) and oxygen (21%). The remaining 1% consists of water vapour,

CO2 and other trace gasses. The Earth’s atmosphere consists of different layers, each one having

different properties (temperatures, pressure, composition, etc…).

Figure 11: Atmosphere layers

NAROM AS 24. Aug. 2015 Page 25 / 42

The different layers are represented in Figure 11, along with various human and weather activities

seen in these layers.

Unlike our CanSat, most satellites operate in the exosphere. Here the density of the atmosphere is

very low. The CanSat however operates in the troposphere, which is the bottom layer of the

atmosphere. This layer contains about 80% of the total mass of the atmosphere, and stretches to

about 10 kilometres altitude. A great deal of the “weather” we observe on a day-to-day basis (wind

and clouds for instance) occurs within this layer.

As seen in Figure 11, the temperature and pressure of the atmosphere varies with altitude.

Although the ambient temperature can rise and fall as you move through the different layers of the

atmosphere. Within the troposphere, there is a linear relation between the temperature and

altitude. On average, ascending one kilometre from sea level will result in a temperature drop of 6.5

degrees Celsius.

The equation below provides the relation:

T - Temperature in Kelvin

𝑇1 - Starting temperature at ℎ1 altitude

h - Altitude in meters

ℎ1 - Starting altitude

a - Temperature gradient: -0.0065 K/m.

The relation between the pressure and the altitude is somewhat more complicated. The pressure is

not only dependent on the altitude but also on the temperature. Let’s start with the relation of

pressure to temperature:

𝑝

𝑝1
= (

𝑇

𝑇1
)

−
𝑔0
𝛼𝑅

p - Pressure in Pascal

𝑝1 - Start pressure in Pascal

𝑔0 - Gravitational acceleration: 9.81 𝑚/𝑠2

R - Specific gas constant: 287.06 J/kg*K

Inserting this formula into the temperature-altitude relation, we achieve the following expression for

altitude as a function of temperature and pressure:

ℎ =
𝑇1

𝛼
((

𝑝

𝑝1
)

−
𝛼𝑅
𝑔0

− 1) + ℎ1

NAROM AS 24. Aug. 2015 Page 26 / 42

Using the radio
Introduction

Telemetry is a technology that allows transmission of data from remote measurement devices. It is

derived from the Greek words “tele”, meaning remote, and “metron”, meaning measure. Telemetry

is an essential part of rocketry and satellite technology. Information is transmitted wirelessly using

radio waves. On the ground these signals are collected by radio receivers. Large space agencies have

networks of these ground stations stretching all over the globe, tracking, monitoring and receiving

telemetry from their satellites.

Telemetry data can be divided into two groups: data from internal sources and data from external

sources. Rockets and satellites are equipped with countless sensors that measure internal

parameters. The measurements they take may relate to temperature, pressure, attitude, power

usage, and a wide variety of other measurements. The information from these sensors is called

“housekeeping data”. This is used to monitor the satellites health, and is necessary for the operation

of the system.

Information from the external sources is mostly what interest scientists. This is the data collected

from the payload. The payload of a research satellite typically takes the form of sensors or other

equipment which measures and generates data about our planet, the space environment, the sun,

the stars, or any number of other things depending on the mission. This information is called the

“mission data” or “scientific data”. In your CanSat this would be the information from the sensor

board. This data is sent to a ground station to be studied by scientists.

CanSat telemetry operations can be broken down into three distinct components: transmitting data,

receiving data, and processing data. The transmitter board inside the CanSat collects information and

transmits it as a radio signal. This signal is received by the ground station and sent to a laptop, where

it is stored before being processed as experimental data.

Transceiver
A transceiver is a device comprising both a transmitter and a receiver which are combined and share

common circuitry or a single housing. When no circuitry is common between transmit and receive

functions, the device is a transmitter-receiver.

In the Arduino CanSat kit we are using APC220 which is a transceiver,

with a highly versatile low power radio solution that is easy to setup and

integrate into any project requiring a wireless RF link.

It is perfect for robotic application which gives you wireless control.

You can connect one of these modules with your microcontroller

through TTL interface. And connect your PC with another APC220

module through a TTL/USB converter.

NAROM AS 24. Aug. 2015 Page 27 / 42

Setting up transceiver hardware
There are two ways of configuring the transceivers. They can be

programed directly from the Arduino board, or you can program

them by using the program RF-Magic. RF-Magic has a lot of

bugs, and some computers will have problems getting the

program to run properly. We will explain both methods, but we

recommend using the Arduino.

Installing drivers
The transceiver at the ground station will be connected to the computer trough a USB-TTL converter.

This module needs a driver to work properly.

The latest VCP (Virtual Com Port) drivers for the USB-TTL module can be downloaded from

Silabs.com (CP210x USB to UART Bridge VCP Drivers).

When you are at silabs.com website go to products and click on “USB Bridges”. Scroll down on the

page until you see the “Kits and Development Tools” section.

Click on the “Virtual Com Port (VCP) Download” and download the file according to your platform.

When downloaded, unzip the file and run “CP210xVCPInstaller_x64”.

It's recommended to first install the USB-TTL converter drivers and then plug in the USB converter

with the inserted APC module. When the module is inserted, Windows will recognize it and configure

the necessary drivers. If Windows does not recognize the device or reports that the device is not

functioning properly; remove it from the USB port and reinsert it.

Programming the transceivers with Arduino

 Connect the Arduino board to the computer and upload the program “apc220cfg.ino” which is found

on the DVD (or NAROM’s web site). Make sure you upload the program before you try to connect

the transceiver to the Arduino board. Disconnect the USB cable (and battery) from the Arduino board

and connect the transceiver to the Arduino as shown in figure 12.

Figur 12: Connecting the transceiver to the Arduino UNO board

http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

NAROM AS 24. Aug. 2015 Page 28 / 42

The transceivers will be connected to the pins labelled GND, 8,9,10,11,12 and 13 on the Arduino

board.

Reconnect the Arduino board trough the USB cable and open the Serial Monitor. In the command

line at the top, type in ‘m’ and hit enter. This will bring up the menu shown in Figure 13.

Figure 13: Configuration of the transceiver

If you type ‘r’ and hit enter, the program will return the current configuration for the transceiver. To

reconfigure the radio, type ‘w’ and the 6 parameters needed, with space between each parameter.

Note that you have to configure both transceivers with the same settings to be able to use them

together.

NAROM AS 24. Aug. 2015 Page 29 / 42

RF-Magic
The transceivers can also be programmed by using RF-Magic, however the program has a lot of bugs,

and we don’t recommend using this program. Your hair will turn grey!

Once the drivers are correctly installed and the hardware is ready to use, start the interface program

RF-Magic as administrator. Most likely during start, an error will be generated. This is because the

program cannot find the device on the expected com-port.
If you have trouble connecting the USB-UART bridge with RF-Magic, check that you have it in the

Device Manager and try to set the com-port number as low as possible.

When RF-Magic has found the device it will appear in the bottom of the window as shown in Figure

15.

Still not working? Try restarting the computer. If the problem consists; uninstall the driver and

reinstall it.

When you have the RF-Magic up and running you can configure the radio to your designated

frequency and bitrate. Remember to configure both radios, otherwise you won’t be able to

communicate between the CanSat and ground station.

For your CanSat you have been given a pre-set frequency. If not, a list of frequencies are listed in the

Appendix. The bitrate should be set to 9600bps.

Figure 15: RF-Magic with working COM-port

Figure 14: Error Message

NAROM AS 24. Aug. 2015 Page 30 / 42

Preparing CanSat Shield Radio
On the CanSat shield, Figure 1, there are two sets of jumper pins, J2 and J3. When J2 and J3 is not

connected you can program the Arduino. By setting the jumpers at J2-1 and J2-2 you can transmit

data to the radio. When placing jumpers at J3-1 and J3-2 you enable data storage in the SD-card (if

it’s connected).

Figure 16: The CanSat Shield with radio

Testing the radio
When you are finished programming the CanSat kit you should test that the radio link is working

properly. Place jumpers on J2, connect the receiver to the PC via the USB to UART Bridge (USB-

converter) and open the Arduino software.

Change the COM-port from Arduino Uno R3 (COMxx) to Silicon Labs CP210x USB to UART Bridge

(COMxx) in the Arduino software by going to Tools → Serial Port. If you don’t remember which COM-

port that is the correct one, go to the Device Manager.

Press the serial monitor to look at the data that is coming from the radio. To store data we use Tera

Term VT.

NAROM AS 24. Aug. 2015 Page 31 / 42

Terminal v1.9b by Br@y++
Terminal by Bray is a freeware program that can read and store data coming from the serial ports.

You can download the latest version from https://sites.google.com/site/terminalbpp/

Choose the correct Com-port and click connect in the top left corner in the program.

If you have an Arduino (or radio) connected you should receive data in the terminal.

If you want to store the data you can find a button labelled “StartLog”. A popup will appear asking

you where to store the log-file. Choose your folder and file name and press “Open”. The terminal will

now write all the data coming in from this point and until you press “StopLog”.

After you are done logging data, you can open the text-file in any text editor. If the data is plain

numbers with commas between it is easy to copy into Excel or other mathematical programs.

https://sites.google.com/site/terminalbpp/

NAROM AS 24. Aug. 2015 Page 32 / 42

Parachute design
Satellites normally do not return to Earth in a parachute. At the end of their useful life, a satellite will

be put in a different orbit. For satellites orbiting at a low altitude this could mean they will burn up in

the atmosphere. Satellites further away will end up in a much more distant parking orbit and will

circle our planet forever. Sometimes however the spacecraft has to return to earth with samples or

astronauts. One of the solutions is then to descend in a parachute.

When the CanSat is deployed it must have a device to slow it down, otherwise it will crash into the

surface. The parachute also helps ensure that the CanSat stays in an upright position. This is

particularly important because it helps to maintain proper antenna orientation, which maximises the

chances of receiving telemetry. This lesson will guide you through the different steps needed to

design and built your parachute.

Required Descent Parameters
The values are still preliminary; they may change in the future. However they can be used as a

temporary guideline. Uncertainties in the Launch Campaign could lead to a different value for the

eventual descent velocities.

Minimal descent Velocity: 8 m/s

Maximal descent Velocity: 11 m/s

Maximum allowed mass: 350 grams

Drag coefficients:

 Semi Spherical: 1.5

 Cross Shaped: 0.8

 Parapent: depends on the design (can be determined by tests)

 Flat, hexagon: 0.8

Parachute production
When the design of the parachute is finished you can start the production process. There are

however a few important issues to keep in mind during this process. Deployment of the parachute

will be relatively violent, so the fabric and fibres you use need to be strong. Most often you can get

nylon cord and ripstop fabric at a kite shop. These materials are ideally suited for the parachute.

When cutting the fabric keep in mind that some of the fabrics need to be cast double in order to sew

it.

More handy tips on parachute production can be found here:

http://www.nakka-rocketry.net/paracon.html

When the parachute is done, the best way to check if it works is to actually test it.

http://www.nakka-rocketry.net/paracon.html

NAROM AS 24. Aug. 2015 Page 33 / 42

Example Assignments

The following assignments can be performed when working on the parachute.

 Calculate the impact speed of the can without a parachute (when released from 1 kilometre

altitude).

 Calculate the minimum required area for your parachute when you use a cross parachute.

What size should the squares be on the chute?

 Perform the same calculation for a spherical parachute. What is the radius?

 Test the descent velocity of your parachute with a soda can?

 Try out different solutions for the parachute. A parachute

with some holes in it or perhaps multiple small parachutes? Both will

enhance the stability of the CanSat.

Descent Physics
Before we can start making the parachute we will have to figure out

how big it should be. More specifically, we need to calculate how

much surface area the parachute will need in order to fulfil the

requirements.

Logic suggests that the bigger the parachute the slower the object’s

descent velocity. Later on this principle is shown with some basic

equations. Although it would be very beneficial for the CanSat to

have a very low descent rate, a limit has been set to ensure that the

CanSat will land near the launch area. If the descent rate is too slow

the CanSat may drift kilometres away along with the wind, which is

neither allowed nor desired. For safety reasons there has also been set a maximum descent rate.

To design the parachute we’ll use some simple physics. We use a simplified model to estimate the

area of the parachute, after which we can start on the construction.

During the descent two forces will be acting on the CanSat. Gravity will pull on the can and accelerate

it towards the ground, and the drag force on the parachute will pull the CanSat in the opposite

direction and slow down the descent rate. The two forces are shown in the image above.

When the CanSat is deployed, the force of gravity will cause it to accelerate. After a few seconds the

drag force from the parachute will reach equilibrium with the force of gravity. From that point on,

the acceleration will be zero and the CanSat will descend at a constant velocity. This constant velocity

has to be greater than the minimum descent velocity specified in the requirements. For the following

calculations we can use this minimum value as the constant velocity of the CanSat.

The gravity force is equal to:

𝐹𝑔 = 𝑚 ∗ 𝑔

NAROM AS 24. Aug. 2015 Page 34 / 42

In this equation:

m: Mass of the CanSat

g: Acceleration of gravity, equal to 9.81
𝑚

𝑠2

The drag force of the parachute is equal to:

𝐹𝐷 = 0.5 ∗ 𝐶𝐷 ∗ 𝜌 ∗ 𝐴 ∗ 𝑉2

In this equation:

A: Total area of the parachute (not just the frontal area)

𝐶𝐷 : Drag coefficient of the parachute. This value depends on the shape of the parachute.

ρ: Local density of the air, assumed to be constant at 1.225
𝑘𝑔

𝑚3.

V: Descent velocity of the CanSat

Given a desired velocity, you can easily rewrite these equations to calculate the area needed for the

parachute.

Semi-spherical Parachute Design

A semi-spherical appearance is the most common shape of a parachute. Although it is not hard to

make one, it can be quite time-consuming to get the right shape. The figure below should help out.

Figure 17: Semi-spherical parachute

n stands for the number of needed parts

r stands for the radius of the parachute.

NAROM AS 24. Aug. 2015 Page 35 / 42

Cross Parachute Design

Figure 18: Cross Parachute

Instead of using a semi spherical shaped parachute you can also choose a cross shape. The advantage

of this shape is that it’s easy to make. If you want to know more about cross shaped parachutes you

can check the following link:

http://www.nakka-rocketry.net/xchute1.html

Parapent

A parapent shaped parachute acts a bit like a wing. Because of its shape you can use it to steer. The

design of a parapent is more complex than that of the other shapes mentioned. You will have to do

some more research if you wish to use this type of parachute.

Figure 19: Parapent

http://www.nakka-rocketry.net/xchute1.html

NAROM AS 24. Aug. 2015 Page 36 / 42

Flat parachute design
Most commonly available parachutes are in fact created from standard two-dimensional flat

geometric figures, such as hexagons or octagons.

Figure 20: Octagon parachute

From Figure 20 above it is shown that the parachute consist of 8 equal triangles. Hence the total area

for the parachute would be 𝐴 = 8 ∗ 𝐴𝑇, where the area of one triangle is 𝐴𝑇 = 𝑠 ∗
ℎ

2
. By combining

these two equations we get 𝐴 =
8∗𝑠∗ℎ

2
. You can read more about how to calculate the area of a flat

parachute here:

http://www.sunward1.com/imagespara/The%20Mathematics%20of%20Parachutes%28Rev2%29.pdf

As soon as you know the total area (A) together with the drag coefficient (Cd) you can easily

determine the descent rate for your CanSat. If you do not know the drag coefficient for your

parachute, you can do drop tests of the CanSat to find the terminal velocity.

http://www.sunward1.com/imagespara/The%20Mathematics%20of%20Parachutes%28Rev2%29.pdf

NAROM AS 24. Aug. 2015 Page 37 / 42

CanSat Design
Introduction
The whole concept of CanSat is that neither weight

nor volume shall be bigger than a standard soda

can. Electronics must be mounted on a robust

bracket that handles the stress of a launch and

separation from a rocket. The parachute must be

connected to the bracket, not the can! The can is

just a shield to protect the electronics against

direct impact.

The antenna should be a tread antenna because of

its flexibility so when the CanSat lands, the antenna

won’t be damaged during impact.

Competition requirements
NAROM has since 2009 held national CanSat

competitions and also two European competitions

in cooperation with the European Space Agency.

NAROM uses the following set of requirements that are compatible with the Intruder rocket.

 All the components of the CanSat, with the exception of parachute, antenna and GPS, must

fit inside a European soda can: 115 mm high and 66 mm diameter.

 The maximum mass of the CanSat is limited to 350 grams.

 The CanSat should have a recovery system, such as a parachute.

 The deployable subsystems and recovery system can exceed the length of the primary

structure, but can’t be deployed before the CanSat is fully ejected from the rocket.

 Flight time is limited to 120 sec (If not other agreements have been made).

 The descent rate must be between 8 m/s and 11m/s (If not other agreements have been

made).

 Explosives, detonators, pyrotechnics, flammable materials, dangerous materials and

biological payloads are strictly forbidden. All materials used must be safe for personnel,

equipment and the environment. Material Safety Data Sheets (MSDS) will be requested in

case of doubt.

 The CanSat shall operate with a battery or solar panels. It must be possible for the systems to

be powered on for three continuous hours.

 The CanSat must be able to withstand an acceleration of up to 20G.

 The battery must be easily accessible, in case it has to be replaced or recharged in the field.

 The total budget of the CanSat should not exceed €500.

Note that these requirements are just temporary guidelines. In the event of a competition the

requirements will be announced.

Figure 21: The CanSat with bracket

NAROM AS 24. Aug. 2015 Page 38 / 42

The Bracket
There are several ideas on how the brackets should look like. We

are going to make suggestion on how it can fit the Arduino board.

The drawing, Figure 22, shows the bracket with dimensions and

placements of holes before it is bent. The material you can use for

the plate is 0.5-1 mm aluminium.

The plate is bent 900 inwards on top and 900 outwards on the

bottom. Where to bend the plate is shown on the drawing.

Remember holes for strips to fasten the battery.

To make the CanSat easy to turn on and off, a switch is

recommended to be placed between the battery and the CanSat

kit. But remember that the switch will be a weak link during launch

campaign.

In Figure 23 we can see an example of how the CanSat could look
like.

Figure 23: Finished CanSat

Figure 22: CanSat Bracket design

NAROM AS 24. Aug. 2015 Page 39 / 42

Antenna design
The antenna that is included with the APC220 radio is a 433MHz Rubber Duck antenna. This antenna

is robust and great for testing, but won’t fit inside a soda can.

Figure 24: Duck antenna

A good alternative is the simple thread antennas that can be soldered directly on to the transmitter

output or attached to a SMA-connector. Normally such antennas will be a quarter-wavelength. The

thickness is not critical; the most important is the flexibility and durability.

Antenna length can be calculated from equation below when the frequency (f), and velocity of light

(c) is known:

If we have a frequency of 434 MHz, then the equation for calculating the length of a quarter

wavelength is:

𝐿 =
𝑐

4𝑓
 =

(3 ∗ 108)

(4 ∗ 434 ∗ 106)
 = 0.173𝑚

By this calculation we find that the antenna should be 17.3 cm long. We can build this antenna by

using a coaxial cable. Remove 17.3 cm of the plastic jacket and the metallic shield from the cable,

leaving the centre core and dielectric insulator. Make sure that the shielded part of the cable reaches

all the way out of the can before it is stripped.

<

Figure 25: Thread antenna

NAROM AS 24. Aug. 2015 Page 40 / 42

Appendix

Frequencies

Frequencies (MHz) Team Frequencies (MHz) Team

433,050 433,950

433,100 434,000

433,150 434,050

433,200 434,100

433,250 434,150

433,300 434,200

433,350 434,250

433,400 434,300

433,450 434,350

433,500 434,400

433,550 434,450

433,600 434,500

433,650 434,550

433,700 434,600

433,750 434,650

433,800 434,700

433,850 434,750

433,900 434,800

NAROM AS 24. Aug. 2015 Page 41 / 42

Component list

Compoent Dealer Ordering number

Arduino Uno R3 Farnell 2075382

LM35DZ (Temperatur) Farnell 146-9236

Capacitor 1uF Farnell 945-1455

Resistor 75 ohm Farnell 934-2257

Resistor 10 kohm Farnell 934-1110

Breakaway headers Farnell 109-7955

Jumper 2.54mm 2p Farnell 421-8176

USB2.0 Cable A/B Farnell 8706794

MPX4115A (Trykksensor) Farnell 145-7150

NTCLE100E3103JB0 Farnell 118-7031

Coax Cable RG316 Farnell 183-8802

Battery Connector (10 stk) Farnell 1183124

Female Headers 7p Farnell 2308805

Female Headers 2p Farnell 3419046

MicroSD Card 2GB Komplett

Radio - APC220 DFRobot TEL0005

MMA7361L Pololu.com (USA) 1246

Parachute 18 inch Nylon Apogeerockets 29112

Logger - OpenLog Sparkfun DEV-09530

Aalborg CanSat shield Aalborg Uni./NAROM

http://no.farnell.com/jsp/search/productdetail.jsp?CMP=i-ddd7-00001003&sku=9451455
http://no.farnell.com/jsp/search/productdetail.jsp?CMP=i-ddd7-00001003&sku=9342257
http://no.farnell.com/jsp/search/productdetail.jsp?CMP=i-ddd7-00001003&sku=4218176

NAROM AS 24. Aug. 2015 Page 42 / 42

Pin-out diagram

Analog5 Temperature (LM35)

Analog4 Acceleration Z-axis

Analog3 Acceleration Y-axis

Analog2 Acceleration X-axis

Analog1 Pressure

Analog0 Temperature (NTC)

Vin Battery +

Gnd Battery -

Gnd

5V

3.3V

Reset

IORef

Radio/logger Tx Digital0/Rx

Radio/logger Rx Digital1/Tx

Logger reset Digital2

 Digital3

 Digital4

 Digital5

 Digital6

 Digital7

 Digital8

 Digital9

 Digital10

 Digital11

 Digital12

 Digital13

 Gnd

 ARef

Analog4 SDA (I2C)

Analog5 SCL (I2C)

Arduino
Tx

Arduino
Rx

Arduino
Tx

Arduino
Rx

Radio
Rx

Radio
Tx

Logger
Rx

Logger
Tx

1.5/3 g
selector

3.3V

AAU-CanSat shield ver. 3.2 or earlier

